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Abstract

In this paper we study the dynamics and kinematics of manipulators that have fewer actuators than

degrees of freedom. These under{actuated manipulators arise in a number of important applications such

as free{
ying space robots, hyper{redundant manipulators, manipulators with structural 
exibility, etc. In

our analysis we decompose such under{actuated manipulators into component active and passive arms. This

decomposition allows techniques previously developed for regular (fully{actuated) manipulators to be applied

to under{actuated systems. Spatial operator identities are used to develop closed{form expressions for the

generalized accelerations for the system. These expressions form the basis for a recursive O(N ) dynamics

algorithm. The structure of this algorithm is a hybrid of known forward and inverse dynamics algorithms

for regular manipulators. We also develop expressions and computational algorithms for the generalized and

disturbance Jacobians for under{actuated manipulators. The application of the results in this paper to space

manipulators is also described.

1 Introduction

An extensive amount of research on the kinematics, dynamics and control of robots has been carried out

for regular (i.e. fully{actuated) manipulators. Every degree of freedom is an active degree of freedom for

these manipulators. That is, for each degree of freedom, there is an independent generalized force that can

be applied by a control actuator. However, many important applications involve manipulators with passive

degrees of freedom, i.e., degrees of freedom with no corresponding control actuators. A passive degree of

freedom can arise from either the absence or failure of an actuator, or due to a mode of operation that

avoids the use of some available actuators. We refer to manipulators with passive degrees of freedom as

under{actuated manipulators. For under{actuated manipulators, the number of available control actuators

(or more speci�cally { the number of independent generalized forces) is less than the number of degrees of

freedom.

The analysis of the dynamics of under{actuated manipulators is signi�cantly more complex than

that for regular manipulators. There is inertial coupling between the motion of the active and the passive

hinges, so that mappings such as the Jacobian matrix, depend not only on the kinematical properties, but

also on the inertia properties of the links. The presence of passive degrees of freedom often results in a lack

of full controllability of the system. Previous work on the modeling and control of such manipulators can be

found in references [1{3]. Some examples of under-actuated manipulators are described below.

1. Free{
ying space manipulators possess six degrees of freedom for the base{body in addition to the

manipulator hinge degrees of freedom. The six base{body degrees of freedom are controlled by an

attitude and translation control system while the manipulator motion is controlled by actuators at

the hinges. The manipulator is sometimes operated with the base{body control system turned o� to

conserve fuel. In this mode of operation, the six base{body degrees of freedom are passive while the

manipulator hinge degrees of freedom are active degrees of freedom.
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2 NOMENCLATURE

2. The improved dexterity and maneuverability provided by additional degrees of freedom has motivated

the study of hyper{redundant and snake{like robots [1, 4]. It has been proposed that the mass of

hyper{redundant manipulators be reduced by providing actuators at only some of the hinges while

keeping the remaining hinges passive.

3. Flexible{link manipulators are inherently under{actuated. In addition to the hinge degrees of freedom,

these manipulators possess deformation degrees of freedom from link 
exibility. While careful structural

analysis can provide good models for the elastic forces, these generalized forces cannot be directly

controlled. As a result the deformation degrees of freedom represent passive degrees of freedom.

4. Actuator failure can convert an active hinge into a passive one. In the face of actuator failures, some

degree of fault{tolerant control is highly desirable for robots in remote or hazardous environments.

This requires the control of an under{actuated manipulator.

5. During multi{arm manipulation of task objects, the degrees of freedom associated with loose grasp

contacts (eg. rolling contacts), or internal degrees of freedom of task objects (eg., shears, plungers) are

typically passive degrees of freedom.

6. Fuel slosh has a signi�cant impact on the dynamics of space vehicles. The complex models for fuel slosh

are typically approximated to �rst order by pendulum models. These pendulum degrees of freedom

represent passive degrees of freedom.

Research in these areas has resulted in the development of useful, though largely application{speci�c tech-

niques for the analysis and control of these systems. The extensibility of these techniques to other types

of under{actuated manipulators is not always obvious. For instance, most analysis of free{
ying space{

robots relies extensively on the non{holonomic constraint arising from the conservation of linear and angular

momenta for these manipulators. These techniques cannot be applied to under{actuated systems such as

hyper{redundant manipulators or 
exible link manipulators for whom such momentum constraints do not

hold. A goal of this paper is to take steps towards a more general framework for the kinematics and dynamics

of under{actuated manipulators.

We make extensive use of techniques from the spatial operator algebra [5]. InSection 3, we review the

spatial operator approach and develop the equations of motion for regular manipulators The modeling and

dynamics of under{actuated manipulators is described in Section 4 Operator expressions for the generalized

accelerations form the basis for a recursive O(N ) dynamics algorithm described in Section 5 Expressions and

computational algorithms for the disturbance and generalized Jacobians that relate the motion of the active

hinges to the motion of the passive hinges and the end{e�ector are developed in Section 6 The application

of the results of this paper to space manipulators is discussed in Section 7

2 Nomenclature

Coordinate free spatial notation is used throughout this paper (see references [5, 6] for additional details).

The notation ~l denotes the cross{product matrix associated with the 3{dimensional vector l, while x� denotes

the transpose of a matrix x. In the stacked notation used in this paper, indices are used to identify quantities

pertinent to a speci�c link. Thus for instance, V denotes the vector of the spatial velocities for all the links,

and V (k) denotes the spatial velocity vector for the kth link. Some key quantities used in this paper are

de�ned below.

n number of links in the manipulator

Ok inboard (body) frame for the kth link
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3 DYNAMICS OF REGULAR MANIPULATORS

O+
k outboard frame on the (k + 1)th link

r(k) number of degrees of freedom for the kth hinge

N =
Pn
k=1 r(k), the total number of degrees of freedom for the manipulator

�(k) 2 <r(k), the vector of generalized coordinates for the kth hinge

�(k) 2 <r(k), the vector of generalized velocities for the kth hinge

l(k; j) 2 <3, the vector from the kth to the jth body frame

�(k; j)
4
=

�
I ~l(k; j)

0 I

�
2 <6�6, the spatial transformation operator between the jth and the kth

hinges

H�(k) 2 <6�r(k), the joint map matrix for the kth hinge

m(k) the mass of the kth link

p(k) 2 <3, the vector from Ok to the center of mass of the kth link

J (k) 2 <3�3, the inertia matrix for the kth link referred to Ok

M(k) =

�
J (k) m(k)~p(k)

�m(k)~p(k) m(k)I3

�
2 <6�6, the spatial inertia of the kth link referred to Ok

V (k) =

�
!(k)

v(k)

�
2 <6, the spatial velocity of the kth link referred to Ok, with !(k) and v(k)

denoting the angular and linear velocity components respectively

a(k) =

�
~!(k + 1) 0

0 ~!(k + 1)

�
[V (k) � V (k + 1)] 2 <6, the Coriolis acceleration for the kth link

referred to Ok

b(k) =

�
~!(k)J (k)!(k)

m(k)~!(k)~!(k)p(k)

�
2 <6, the gyroscopic force for the kth link referred to Ok

�(k) 2 <6, the spatial acceleration of the kth link referred to Ok

f(k) =

�
N(k)

F (k)

�
2 <6, the spatial force of interaction between the (k+1)th and the kth link referred

to Ok, with N(k) and F (k) denoting the moment and force components respectively

T (k) 2 <r(k), the generalized force for the kth hinge

M 2 <N�N , the mass matrix for the manipulator

C 2 <N , the vector of Coriolis and gyroscopic forces for the manipulator

Ap, Aa the passive and active manipulator subsystems of an under{actuated manipulator

np; na the number of passive and active hinges

Np; Na the number of passive and active degrees of freedom

Ip; Ia the set of indices of the passive and active hinges
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3 DYNAMICS OF REGULAR MANIPULATORS
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Figure 1: Illustration of the links and hinges in a serial manipulator

3 Dynamics of Regular Manipulators

We consider a serial manipulator with n rigid body links. As shown in Figure 3, the links are numbered in

increasing order from tip to base. The outer most link is denoted link 1 and the inner most link is denoted

link n.

Corresponding to each of the pair of (inboard and outboard) hinges attached to the kth link, we

assign two frames denoted Ok and O+
k�1 to the link. Frame Ok is on the inboard side and is also the body

frame for the kth link. The kth hinge connects the (k + 1)th and kth links and its motion is de�ned as the

motion of frame Ok with respect to frame O+
k+1. When applicable, the free space motion of a manipulator is

modeled by attaching a 6 degree of freedom hinge between the base link and the inertial frame. The kth hinge

is assumed to have r(k) degrees of freedom where 1 � r(k) � 6, and its vector of generalized coordinates is

denoted �(k). For simplicity, and without any loss in generality, we assume that the number of generalized

velocities for the hinge is also r(k), i.e., there are no nonholonomic constraints on the hinge. The vector of

generalized velocities for the kth hinge is denoted �(k) 2 <r(k). The choice of the hinge angle rates _�(k)

for the generalized velocities �(k) is often an obvious and convenient choice. However, when the number of

hinge degrees of freedom is greater than one, alternative choices are often preferred since they simplify and

decouple the kinematic and dynamic parts of the equations of motion. An instance is the use of the relative

angular velocity (rather than Euler angle rates) for the generalized velocities vector for a free{
ying system.

The overall number of degrees of freedom for the manipulator is given by N =
Pn

k=1 r(k).

The spatial velocity, V (k), of the kth body frame Ok is de�ned as V (k) =

�
!(k)

v(k)

�
2 <6, with

!(k) and v(k) denoting the angular and linear velocities of Ok. The relative spatial velocity across the kth

hinge is given by H�(k)�(k) where H�(k) 2 <6�r(k) is the joint map matrix for the hinge. The spatial force

of interaction, f(k), across the kth hinge is denoted f(k) =

�
N(k)

F (k)

�
2 <6, with N(k) and F (k) denoting

the moment and force components respectively. The spatial inertia M(k) of the kth link referred to Ok is

de�ned as

M(k) =

�
J (k) m(k)~p(k)

�m(k)~p(k) m(k)I3

�
2 <6�6
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3 DYNAMICS OF REGULAR MANIPULATORS

where m(k) is the mass, p(k) 2 <3 is the vector from Ok to the center of mass, and J (k) 2 <3�3 is the

inertia of the kth link about Ok.

With V (k) denoting the spatial velocity, �(k) the spatial acceleration, f(k) the spatial force and

T (k) the generalized hinge force at Ok for the k
th link, the following Newton{Euler recursive equations [5,7]

describe the equations of motion for the serial manipulator:

8>>>><
>>>>:

V (n+ 1) = 0; �(n+ 1) = 0

for k = n � � � 1

V (k) = ��(k + 1; k)V (k + 1) +H�(k)�(k)

�(k) = ��(k + 1; k)�(k + 1) +H�(k) _�(k) + a(k)

end loop

(3.1)8>>>><
>>>>:

f(0) = 0

for k = 1 � � �n

f(k) = �(k + 1; k)f(k � 1) +M(k)�(k) + b(k)

T (k) = H(k)f(k)

end loop

Here a(k) and b(k) denote the velocity dependent nonlinear Coriolis acceleration and gyroscopic force terms

respectively. �(k; k � 1) denotes the transformation operator between the Ok�1 and Ok frames and is given

by

�(k; k � 1) =

�
I3 ~l(k; k � 1)

0 I3

�
2 <6�6

We use spatial operators [5] to obtain compact expressions for the equations of motion and other key

dynamical quantities. The vector �
4
= [��(1); � � � ��(n)]� 2 <N denotes the vector of generalized coordinates

for the manipulator. Similarly, we de�ne the vectors of generalized velocities � 2 <N and generalized (hinge)

forces T 2 <N for the manipulator. The vector of spatial velocities V is de�ned as V
4
= [V �(1) � � � V �(n)]� 2

<6n. The vector of spatial accelerations is denoted � 2 <6n, that of the Coriolis accelerations by a 2 <6n and

of the link gyroscopic forces by b 2 <6n, and the link interaction spatial forces by f 2 <6n. The equations

of motion for the serial manipulator can be written as follows (see reference [5] for details):

V = ��H�� (3.2a)

� = ��[H� _� + a] (3.2b)

f = �[M�+ b] (3.2c)

T = Hf =M _� + C (3.2d)

where

M
4
= H�M��H� 2 <N�N (3.3a)

C
4
= H�[M��a+ b] 2 <N (3.3b)
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4 MODELING OF UNDER{ACTUATED MANIPULATORS

and H
4
= diag

n
H(k)

o
; M

4
= diag

n
M(k)

o
,

E�
4
=

0
BBBBB@

0 0 0 0 0

�(2; 1) 0 : : : 0 0

0 �(3; 2) : : : 0 0
...

...
. . .

...
...

0 0 : : : �(n; n� 1) 0

1
CCCCCA

(3.4a)

�
4
= (I � E�)

�1 =

0
BBB@

I 0 : : : 0

�(2; 1) I : : : 0
...

...
. . .

...

�(n; 1) �(n; 2) : : : I

1
CCCA (3.4b)

with

�(i; j)
4
= �(i; i� 1) � � � �(j + 1; j) for i > j

M is the mass matrix for the manipulator and the vector C contains the velocity dependent Coriolis

and gyroscopic hinge forces. External forces on a link are handled by adding their sum e�ect to the component

of the b vector for that link.

Using the index 0 to represent the end{e�ector frame, the spatial velocity, V (0), of the end{e�ector

is given by

V (0) = ��(1; 0)V (1) = BV = B��H� _� (3.5)

where the operator B is

B
4
= [��(1; 0); 0; � � �0]� 2 <6n�6

From (3.5) it follows that the operator expression for the end{e�ector Jacobian, J , is given by

J
4
= B���H� (3.6)

From here on, we extend the terminology hinge to include manipulator degrees of freedom that

do not necessarily arise from physical hinges. This is possible because with spatial operators, both hinge

and non{hinge manipulator degrees of freedom share similar mathematical representations. The operator

formulation described in this section extends to manipulators such as free{
ying space robots and 
exible

link manipulators which have degrees of freedom not associated with physical hinges. Such an extension

of the operator formulation to 
exible link manipulators is described in reference [8]. Only the detailed

structure of the �(:; :), H(:) and M(:) elements require modi�cation. For free{
ying space manipulators,

the degrees of freedom associated with overall motion in free{space is modeled by attaching a 6 degree of

freedom hinge between the base{body and the inertial frame.

4 Modeling of Under{Actuated Manipulators

We now turn to the topic of under{actuated manipulators, i.e., manipulators with more degrees of freedom

than control actuators. As mentioned earlier, we use the term active degree of freedom for a manipulator

degree of freedom associated with a control actuator. Conversely, a passive degree of freedom is a manipulator

degree of freedom with no control actuator. Due to the presence of friction, sti�ness etc., the generalized

force associated with a passive degree of freedom need not necessarily be zero. For a free{
ying space

manipulator all the manipulator internal hinge degrees of freedom are active degrees of freedom. However,
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4 MODELING OF UNDER{ACTUATED MANIPULATORS

the six positional and orientation degrees of freedom for the manipulator as a whole represent passive degrees

of freedom. In the case of manipulators with link or joint 
exibility, the degrees of freedom associated with

the link deformation are passive, while the hinge degrees of freedom are all active. In this instance, the

generalized forces for the passive degrees of freedom are non{zero and contain contributions from the elastic

sti�ness and damping forces.

Typically, the component degrees of freedom of a multiple degree of freedom hinge are either all

active or all passive. In the former case the hinge is denoted an active hinge and in the latter, a passive

hinge. In certain situations, such as due to actuator failures, it is possible to have multiple degree of freedom

hinges with a mix of active and passive component degrees of freedom. However, for modeling purposes, such

multiple degree of freedom hinges can be decomposed into equivalent concatenation of active and passive

hinges. In the rest of the discussion, we assume that a manipulator model with hinges containing a mix

of passive and active component degrees of freedom has been replaced by an equivalent manipulator model

containing only active and passive hinges.

The number of passive hinges in the manipulator is denoted np, and Ip denotes the set of their indices.

Ia denotes the corresponding set of indices of the active hinges and na = (n � np) is the number of active

hinges in the manipulator. The total number of passive degrees of freedom is given by Np (=
P
k2Ip

r(k)),

while the total number of active degrees of freedom is given by Na (=
P
k2Ia

r(k)). Note that Na+Np = N .

We use the sets of hinge indices, Ia and Ip, to decompose the manipulator into a pair of manipulator

subsystems: the active arm Aa, and the passive arm Ap. Aa is the Na degree of freedom manipulator

resulting from freezing all the passive hinges (i.e. all hinges whose index is in Ip), while Ap is the Np degree

of freedom manipulator resulting from freezing all the active hinges (i.e. all hinges whose index is in the set

Ia). This decomposition is illustrated in Figure 4.

active hinges

passive
hinges

hinge

Under-actuated Manipulator

Passive 
arm

Active
arm

Aa

Ap

Figure 2: Decomposition of an under{actuated manipulator into component active and passive arms
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4 MODELING OF UNDER{ACTUATED MANIPULATORS 4.1 Equations of Motion

Let �a 2 <
Na , Ta 2 <

Na and H�
a 2 <

6n�Na denote the vector of generalized velocities, the vector

of hinge forces and the joint map matrix for arm Aa. Similarly, let �p 2 <
Np , Tp 2 <

Np and H�
p 2 <

6n�Np

denote the corresponding quantities for arm Ap. The two vectors �a 2 <Na and �p 2 <
Np , also represent

a decomposition of the vector of generalized velocities � in a manner consistent with the sets Ia and Ip
respectively. Similarly Ta and Tp are decompositions of T , and H

�
a and H�

p are decompositions of H�. The

columns of H� that correspond to the active hinges appear as columns of H�
a , while those that correspond

to the passive hinges appear as columns of H�
p . Thus it follows that

H�
a�a +H�

p�p = H�� (4.1)

4.1 Equations of Motion

We use the above decomposition to rewrite the equations of motion of (3.2) in the following partitioned

form:

�
Maa Map

M�
ap Mpp

��
_�a
_�p

�
+

�
Ca
Cp

�
=

�
Ta
Tp

�
(4.2)

where, with i; j 2 fp; ag we have

Mij
4
= Hi�M��H�

j ; and Ci
4
= Hi�[b+M��a] (4.3)

In (4.2), the submatrices Maa and Mpp are the mass matrices for the Aa and Ap arms respectively.

For manipulator control, we need to compute the actuator forces required to obtain a desired motion

of the active hinges and the resulting motion induced at the passive hinges. That is, it is necessary to

compute the active hinge forces Ta required to obtain a desired active hinge acceleration _�a, and the resulting

acceleration _�p induced at the passive hinges. We assume here that models for the passive hinges are available

and can be used to compute the passive hinge forces vector Tp. These models will typically account for e�ects

such as friction, backlash, sti�ness etc. A simple rearrangement of (4.2) puts it in the form

�
Ta
_�p

�
=

�
Saa Sap
�S�ap Spp

��
_�a
Tp

�
+

�
Ca � SapCp
�SppCp

�
(4.4)

where

Saa
4
= Maa �MapM

�1
ppM

�
ap

Sap
4
= MapM

�1
pp (4.5)

Spp
4
= M�1

pp

The direct use of the expression on the right of (4.4) to obtain _�p and Ta requires the computation of

M, the inversion of Mpp and the formation of various matrix/matrix and matrix/vector products. The

computational cost of this dynamics algorithm is cubic in Np and quadratic in Na. Later, in Section 5

we describe a new O(N ) dynamics algorithm that does not require the computation of M, and whose

computational complexity is only linear in both Na and Np

4.2 Spatial Operator Expression for M�1
pp

Since Mpp is the mass matrix of the passive arm Ap, operator factorization and inversion techniques devel-

oped for regular manipulator mass matrices can be used to obtain a closed form spatial operator expression
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4 MODELING OF UNDER{ACTUATED MANIPULATORS 4.2 Spatial Operator Expression for M�1
pp

for M�1
pp . In this section, we brie
y describe the applicable results and refer the reader to reference [5]

for additional details. First, we de�ne the quantities P (:); Dp(:); Gp(:);Kp(:); �p(:); P
+(:) and  (:; :) for the

manipulator links using the following recursive algorithm:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

P+(0) = 0

for k = 1 � � �n

P (k) = �(k; k � 1)P+(k � 1)��(k; k � 1) +M(k)8>>>>>>>>>><
>>>>>>>>>>:

if k 2 Ip
�p(k) = I6

else

Dp(k) = Hp(k)P (k)H
�
p (k)

Gp(k) = P (k)H�
p (k)D

�1
p (k)

Kp(k + 1; k) = �(k + 1; k)Gp(k)

�p(k) = I �Gp(k)Hp(k)

end if

P+(k) = �p(k)P (k)

 (k + 1; k) = �(k + 1; k)�p(k)

end loop

(4.6)

I6 above denotes the 6�6 identity matrix. The quantities de�ned in (4.6) are very similar to the articulated

body quantities required for the O(N ) forward dynamics algorithm for regular manipulators [5, 9]. When

we restrict our attention to the hinges of the Ap (passive) arm alone, these quantities are precisely the

articulated body quantities for the Ap manipulator. The recursion in (4.6) proceeds from the tip to the base

of the manipulator. At each hinge, the active or passive status of the hinge is checked. Depending on the

status of the hinge, the appropriate computations are carried out and the recursion proceeds to the next

hinge. This continues until the base{body is reached.

The operator P 2 <6n�6n is de�ned as a block diagonal matrix with its kth diagonal element being

P (k) 2 <6�6. The quantities in (4.6) are also used to de�ne the following spatial operators:

Dp
4
= HpPH

�
p 2 <

Np�Np

Gp
4
= PH�

pD
�1
p 2 <6n�Np

Kp
4
= E�Gp 2 <

6n�Np

�p
4
= I �GpHp 2 <

6n�6n

E 
4
= E��p 2 <

6n�6n (4.7)

The operatorsDp; Gp and �p are all block diagonal. Even though Kp and E are not block diagonal matrices,

their only nonzero block elements are the elements Kp(k; k � 1)'s and  (k; k � 1)'s respectively along the

�rst subdiagonal. It is easy to verify from (4.6) that P satis�es the equation

M = P � E PE
�
 = P � E�PE

�
 (4.8)

Now de�ne the lower{triangular operator  2 <6n�6n as

 
4
= (I � E )

�1 (4.9)

Its block elements  (i; j) 2 <6�6 are given by

 (i; j)
4
=

8<
:

 (i; i� 1) � � �  (j + 1; j) for i > j

I for i = j

0 for i < j

The structure of the operators  and E is identical to that of the operators � and E� except that the

elements are now  (i; j) rather than �(i; j).
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5 RECURSIVE O(N ) DYNAMICS ALGORITHM

We refer to the expression for Mpp in (4.3) as the Newton{Euler factorization of the passive arm

mass matrix. We now use results from references [5, 6] to develop alternative operator factorization and

inversion expressions. The proofs of Lemmas 4.1{4.3 can be found in [5].

Lemma 4.1 The innovations factorization of the mass matrix Mpp is given by

Mpp = [I +Hp�Kp]Dp[I +Hp�Kp]
� (4.10)

The factorization in Lemma 4.1 can also be regarded as a closed{form LDL� factorization of Mpp. The

closed form operator expression for the inverse of the factor [I +Hp�Kp] is described in Lemma 4.2 below.

Lemma 4.2 [I +Hp�Kp]
�1 = [I �Hp Kp]

Combining Lemma 4.1 and Lemma 4.2 leads to the following closed form operator expression for the inverse

of the mass matrix Mpp.

Lemma 4.3 M�1
pp = [I �Hp Kp]

�D�1p [I �Hp Kp]

The factorization in Lemma 4.3 can be regarded as a closed{form LDL� factorization of M�1
pp .

5 Recursive O(N ) Dynamics Algorithm

The following lemma uses the operator expression for the inverse of Mpp together with (4.5), to derive new

closed form operator expressions for the Sij matrices.

Lemma 5.1

Spp = [I �Hp Kp]
�D�1p [I �Hp Kp] (5.1a)

Sap = Ha

�
 Kp + P �H�

pD
�1
p [I �Hp Kp]

	
= Ha

�
( � P
)Kp + P �H�

pD
�1
p

	
(5.1b)

Saa = Ha[ M � � P
P ]H�
a = Ha[( � P
)P + P ~ �]H�

a (5.1c)

where



4
=  �H�

pD
�1
p Hp (5.2)

Proof: See Appendix A.

The expressions for the Sij matrices in Lemma 5.1 require only the inverse of the block{diagonal

matrix Dp | an inverse that is relatively easy to obtain.

We now derive a recursive O(N ) algorithm for the dynamics of under{actuated manipulators. One

of the primary computations for manipulator control is the computation of the actuator generalized forces

10



5 RECURSIVE O(N ) DYNAMICS ALGORITHM

Ta needed to obtain a desired acceleration _�a at the active hinges and the resulting acceleration _�p induced

at the passive hinges. We use Lemma 5.1 to obtain expressions for _�p, the active hinge forces vector Ta, and

the link spatial accelerations vector � and express them more simplify using the new quantities z; �p and �p
de�ned below.

Lemma 5.2

� =  �
h
H�
p�p +H�

a
_�a + a

i
(5.3a)

_�p = [I �Hp Kp]
��p �K�

p 
�[H�

a
_�a + a]

= �p �K�
p� (5.3b)

Ta = Ha

n
z + P [ �H�

p�p +
~ �(H�

a
_�a + a)]

o

= HaP [��H�
a
_�a � a] +Haz (5.3c)

where

z
4
=  

h
KpTp + b+ P (H�

a
_�a + a)

i

�p
4
= Tp �Hpz

�p
4
= D�1p �p

Proof: See Appendix A.

The ability to convert spatial operator expressions into fast recursive algorithms by inspection is

one of the advantages of the spatial operator approach. This is a direct consequence of the special structure

of operators such as � and  . We use this feature to convert the closed form operator expressions for the

vectors _�p and Ta in Lemma 5.2 into a recursive O(N ) computational algorithm. This algorithm requires a

recursive tip{to{base sweep followed by a base{to{tip sweep as described below:8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

z(0) = 0

for k = 1 � � �n8>>>>>>>>>>>><
>>>>>>>>>>>>:

if k 2 Ia
z(k) = �(k; k � 1)z+(k � 1) + b(k) + P (k)[H�(k) _�a(k) + a(k)]

z+(k) = z(k)

else

z(k) = �(k; k � 1)z+(k � 1) + b(k) + P (k)a(k)

�p(k) = Tp(k)�H(k)z(k)

z+(k) = z(k) +Gp(k)�p(k)

�p(k) = D�1p �p(k)

end if

end loop

(5.4a)

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

�+(n+ 1) = 0

for k = n � � � 1

�+(k) = ��(k + 1; k)�(k + 1)8>>>>>><
>>>>>>:

if k 2 Ia
f(k) = P (k)�+(k) + z(k)

Ta(k) = H(k)f(k)

else
_�p(k) = �p(k)�G�p(k)�

+(k)

end if

�(k) = �+(k) +H�(k) _�(k) + a(k)

end loop

(5.4b)

11



6 KINEMATICAL QUANTITIES

The recursion in (5.4a) starts from the tip of the manipulator and proceeds towards the base. At each hinge,

the active/passive status of the hinge is checked. If the hinge is active, its acceleration is known and is used

to update the residual force z(�). On the other hand, if the hinge is passive, its generalized force is known

and is used to update the residual force. The recursion continues until the base is reached. Now begins the

recursion in (5.4b) from the manipulator base towards the tip. This time, as each new hinge is encountered,

its hinge acceleration is computed if it is a passive hinge, or else, its unknown generalized force is computed

if it is an active hinge. This continues until the tip is reached and all the hinges have been processed. In

summary, this dynamics algorithm requires the following 3 steps:

1. The recursive computation of all the link velocities V (k), and the Coriolis terms a(k) and b(k) using a

base-to-tip recursion sweep as in the standard Newton{Euler inverse dynamics algorithm in (3.1).

2. Recursive computation of the articulated body quantities using the tip-to-base recursive sweep de-

scribed in (4.6).

3. The inward tip-to-base recursive sweep in (5.4a) to compute the residual forces z(k). This is followed

by the base-to-tip recursive sweep in (5.4b) to compute the components of _�p, Ta and �.

Note that the recursions in Step (2) can be combined and carried out in conjunction with the tip-to-base

sweep in Step (3).

We can regard this algorithm as a generalized dynamics algorithm for manipulators. An interesting

feature of this algorithm is that its structure is a hybrid of known inverse and forward dynamics algorithms

for regular manipulators. When all the hinges are passive, Ia is empty and the steps in the above algorithm

reduce to the well known O(N ) articulated body forward dynamics algorithm [5,9] for regular manipulators.

In this case, P (k) is the articulated body inertia of all the links outboard of the kth link. In the other

extreme case, when all the hinges are active hinges, Ip is empty, and the steps in the algorithm reduce to

the composite rigid body inertias based O(N ) inverse dynamics algorithm for regular manipulators [6]. In

this case, P (k) is the composite rigid body inertia of all the links that are outboard of the kth link. For a

general under{actuated manipulator with both passive and active hinges, P (k) is formed by a combination

of articulated and composite body inertia type computations for the links outboard of the kth hinge. It is

in fact the articulated body inertia for all the links outboard of the kth link for the passive arm Ap.

Since each recursive step in the above algorithm has a �xed computational cost per degree of freedom,

the overall computational cost of the algorithm is linear in both Na and Np, i.e. linear in N . That is, this

is an O(N ) dynamics algorithm. The computational cost per passive degree of freedom is larger than the

corresponding cost for an active degree of freedom. Non{zero generalized forces at the passive hinges are

accounted for in a very natural manner in the algorithm. Also, the overhead associated with transitions

between passive and active status of the hinge is small. When such a transition occurs during run{time, the

only change required is to update the sets Ip and Ia.

6 Kinematical Quantities

The end{e�ector Jacobian matrix is widely used in motion planning and control of regular manipulators.

This Jacobian characterizes the relationship between the incremental motion of the controlled hinge degrees

of freedom and the incremental motion of the end{e�ector. In this section we de�ne similar Jacobian{like

quantities for under{actuated manipulators. Some of the new issues that arise in dealing with under{actuated

manipulators are: (a) the incremental motion relationships must be de�ned in the acceleration rather than

in the velocity domain; (b) the Jacobian{like quantities depend not only on the kinematical properties of

the links but also on the inertial properties of the links; and (c) in addition to the motion of the end{e�ector

there is also \disturbance" motion induced at the passive hinges by the motion of the active degrees of

12



6 KINEMATICAL QUANTITIES

freedom. These new features are somewhat simpler in the special case of free{
ying space manipulators with

inactive base{body control because, as discussed in more detail in Section 7, these manipulators possess

linear and angular momentum integrals of motion We brie
y look at their properties here since they provide

a convenient conceptual bridge between the fairly well understood properties of regular manipulators and

those of general under{actuated manipulators.

For regular manipulators, the end{e�ector Jacobian matrix { denoted J { describes the velocity

domain relationship between the incremental motion of the controlled (i.e. all the hinge) degrees of freedom

and the incremental motion of the end{e�ector frame as follows:

V (0) = J�a (6.1)

Here V (0) denotes the spatial velocity of the end{e�ector and �a is the same as � since regular manipulators

do not have any passive hinges. The Jacobian J is independent of dynamical quantities such as link masses

and inertias and depends only upon their kinematical properties. E�cient recursive algorithms have been

developed for Jacobian{related computations for regular manipulators.

(6.1) still holds for free{
ying space manipulators with inactive base{body control and zero spatial

momentum, and describes the motion induced at the end{e�ector due to the motion of the active degrees

of freedom. However, the end{e�ector Jacobian J depends upon the kinematical as well as the inertial

properties of the links. This Jacobian is also referred to as the generalized Jacobian [10, 11] and denoted by

the symbol JG. In addition to (6.1), there is an additional manipulator Jacobian, the disturbance Jacobian,

JD, which describes \disturbance" motion induced in the passive degrees of freedom (the base{body degrees

of freedom) by the motion of the active hinges [10]. This additional relationship can be written in the velocity

domain as

�p = JD�a (6.2)

The disturbance Jacobian is not meaningful for regular manipulators since these manipulators have no

passive degrees of freedom. Like JG, the disturbance Jacobian JD also depends on both the inertial and the

kinematical properties of the links. When some of the base{body control forces are non{zero, or when the

spatial momentum is non{zero, additional \drift" terms must be added to the right hand sides of (6.1) and

(6.2) to account for the e�ect of these forces. Space manipulator control requires not only the control of

the end{e�ector motion but also of the motion of the base{body. The properties of these pair of Jacobian

matrices are fundamental to the development of good control algorithms for such manipulators. Singularity

analysis of JG is used to study the desirable and undesirable regions of the workspace [10]. The Jacobian JG
is also used for space manipulator control using methods such as resolved rate control [11]. In reference [12],

JD is used to for space robot control with the additional objective of minimizing the disturbance imparted

to the base{body of the manipulator.

Unlike the regular manipulator Jacobian J , the Jacobians JG and JD are not true Jacobians, that

is, they are not gradients of any vector valued functions. However, on the plus side, this terminology conveys

the key idea that these matrices de�ne the relationship between the incremental motions of the controlled

hinges and the quantities being controlled.

For general under{actuated manipulators, relationships such as (6.1) and (6.2) cannot, in general,

be expressed directly in the velocity domain, but can only be expressed in the acceleration domain as follows:

�(0) = JG _�a + non{acceleration dependent terms (6.3)

and

_�p = JD _�a + non{acceleration dependent terms (6.4)

The non{acceleration dependent terms on the right hand sides of (6.3) and (6.4) depend on the manipulator

state and the passive hinge forces. The coe�cient matrices JG and JD in (6.3) and (6.4) characterize (in the

13



6 KINEMATICAL QUANTITIES 6.1 The Generalized Jacobian JG

acceleration) domain the e�ect of the incremental motion of the controlled active hinges upon the incremental

motion of the end{e�ector and the passive hinges respectively. Consequently, we adopt the terminology from

the domain of space manipulators and continue to refer to these matrices as the generalized and disturbance

Jacobians.

Later in this section, we derive expressions and computational algorithms for these Jacobians. We

�rst de�ne a pair of projection operators, T and T , as follows:

T
4
= 
M; and T

4
= I � T = I �
M

where 
 is de�ned in (5.2). The following lemma shows that T and T are indeed projection operators.

Lemma 6.1 The operators T and T are projection operators, i.e.,

T 2 = T ; and T
2
= T (6.5)

Moreover, rank [T ] = Np, and rank[T ] = Na. Also,

T �� = T  � =  � �
P (6.6)

T ��H�
p = T  �H�

p = 0 (6.7)

Proof: See Appendix A.

From the expression for Ta in (4.4) it follows that Saa is the mass matrix for the under{actuated

manipulator. The projection operator T provides a new expression for this mass matrix.

Lemma 6.2

Saa = Ha�(T
�
MT )��H�

a = H�(T
�
MT )��H� (6.8)

Proof: See Appendix A.

Note that the mass matrix of the regular manipulator is given by H�M��H�, while that of the

active arm Aa is given by Ha�M��H�
a . Thus the mass matrix of the under{actuated manipulator is related

to the mass matrices of the regular and active manipulators in a simple manner by the projection operator

T .

6.1 The Generalized Jacobian JG

The generalized Jacobian JG 2 <6�na de�nes the relationship between the incremental motions of the

active hinges and of the end{e�ector frame. Combining together the expressions in (5.3) it follows that the

expression for the link spatial accelerations � is

� = [ � �
P ]H�
a
_�a +  �H�

pD
�1[I �Hp Kp]Tp �
[b+ Pa] +  �a (6.9)

Thus the spatial acceleration of the end{e�ector frame, �(0) is given by

�(0) = B��+ a(0)

= B�[ � �
P ]H�
a
_�a +B� �H�

pD
�1[I �Hp Kp]Tp �B�
[b+ Pa] +B� �a+ a(0)

= JG _�a + velocity and Tp dependent terms (6.10)

The expression for the generalized Jacobian JG is given in the following lemma.
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6 KINEMATICAL QUANTITIES6.2 Computation of Active Hinge Forces for a Desired End{E�ector Trajectory

Lemma 6.3 The generalized Jacobian JG is given by

JG
4
= B�[ � �
P ]H�

a = B�T ��H�
a (6.11)

Proof: See Appendix A.

It is clear from (6.11) that the kinematical as well as the inertial properties of the links enter into

the structure of the Jacobian via the projection operator T . In contrast, for regular manipulators, the

end{e�ector Jacobian is purely a function of the kinematical properties of the manipulator. Comparing with

(3.6), we see that the deviation of JG from the Jacobian of the regular manipulator, J , is given by the

projection operator T .

The computation of JG can be carried out recursively. First, all the hinge velocities are set to zero.

This makes the nonlinear velocity dependent terms, a(k) and b(k), zero for all the links. Also, the passive

hinge forces, Tp, are set to zero. Next, all the articulated body quantities are computed using the tip-to-base

recursion in (4.6). The following procedure then leads to the computation of the kth column of JG:

1. Set the hinge accelerations as follows:

_�a(i) =

�
1 for i = k

0 for i 6= k

2. Use the tip-to-base and base-to-tip recursions in (5.4) to compute the spatial acceleration �(1) of the

outer{most link.

3. The kth column of JG is ��(1; 0)�(1).

Repeating this procedure for each of the na columns yields the complete generalized Jacobian matrix JG.

The computational cost of this algorithm is O(Nna). For a given na dimensional vector x, setting _�a = x

and carrying out a single evaluation of Step (2) above results in the O(N ) computation of the matrix-vector

product JGx. While the structure of this algorithm is also recursive, as in the case of Jacobian computations

for regular manipulators, Step (2) requires a tip-to-base recursion in addition to the base-to-tip recursion

needed for regular manipulators.

6.2 Computation of Active Hinge Forces for a Desired End{E�ector Trajectory

The generalized Jacobian can be used to compute the active hinge generalized forces Ta(t) time pro�le

required to achieve a desired end{e�ector time trajectory. The end{e�ector trajectory is de�ned by the time

pro�le of the end{e�ector spatial acceleration �(0) (denoted �0(t)) over the time interval of interest. We

assume that the state of the manipulator is known at the beginning, i.e., the con�guration �(t0) and hinge

velocities �(t0) are known at the initial time t = t0 and that an integration time step �t is being used. A

brief sketch of the computational steps at time t is described below.

1. Compute JG(t).

2. Use (6.10) to compute _�a(t) via

_�a(t) = J�1G (t)[�0(t)� velocity and Tp dependent terms]

3. For this _�a(t), compute Ta(t) and _�p(t) using the generalized dynamics algorithm in Section 5
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7 APPLICATION TO FREE{FLYING SPACE MANIPULATORS 6.3 The Disturbance Jacobian JD

4. Integrate the hinge accelerations and velocities to obtain the hinge velocities �(t+�t) and con�gura-

tions �(t+�t) at time t+�t. Go back to Step 1 and repeat the steps for time (t+�t).

This iterative procedure results in a time pro�le for the actuator forces Ta(t) required to achieve the desired

end{e�ector trajectory. It also computes the trajectory of the passive hinges for the whole time interval.

For simplicity, we have assumed above that JG is square and non{singular. When it is singular, or when

it is non{square because there are redundant active hinge degrees of freedom available or only a subset of

end{e�ector variables are speci�ed (such as for pointing applications), this procedure can be modi�ed to use

methods such as pseudo{inverses and least{squares solutions in ways similar to those for regular redundant

manipulators.

These methods easily apply when frames other than the end{e�ector frames are of interest. The

only change needed is to the B operator so that the Jacobian to the new frame rather than JG is used for

the computations.

6.3 The Disturbance Jacobian JD

In applications where a larger number of active degrees of freedom are available than are needed to meet the

primary objective of end{e�ector motion control, the redundant active degrees of freedom can be used to

meet other secondary objectives. These secondary objectives can include goals such as the optimization of

the passive hinge motion to minimize disturbances. The disturbance Jacobian JD characterizes the inertial

coupling between the active and the passive hinges. It describes the incremental \disturbance" motion

induced in the passive hinges due to the incremental motion of the active hinges. From (4.4), it follows that

the passive hinge accelerations are given by

_�p = �S�ap
_�a + Spp[Tp � Cp]

= �
�
K�
p 

� + [I �Hp Kp]
�D�1p Hp P

	
H�
a
_�a + [I �Hp Kp]

�D�1p fTp �Hp (KpTp + b+M��a)g

= JD _�a + velocity and Tp dependent terms (6.12)

Lemma 6.4 The operator expression for the disturbance Jacobian JD is given by:

JD = �S�ap = �[I �Hp Kp]
�D�1p Hp PH

�
a �K�

p 
�H�

a (6.13)

Proof: This follows from (5.1b).

The computation of JD can be carried out simultaneously with the computation of JG using the

algorithm described earlier in Section 61. The kth column of JD is simply the vector _�p computed during

the steps for the computation of the kth column of JG. The computational cost of this algorithm is also

O(Nna).

7 Application to Free{Flying Space Manipulators

Free{
ying space manipulators are an important example of under{actuated manipulators. We look at

some of their properties and discuss the application of the formulation and algorithms of this paper to these

systems. The con�guration considered consists of a manipulator mounted on a free{
ying space vehicle. The

space vehicle is controlled in six degrees of freedom by an attitude and translation control system. Control

occurs in a coordinate system that moves with the trajectory of the space vehicle. The manipulator motion
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7 APPLICATION TO FREE{FLYING SPACE MANIPULATORS

is controlled by actuators acting at the hinges of the manipulator. One of the critical tasks anticipated for

free{
ying manipulation is to perform a maneuver in which the manipulator has to move (to grasp a truss

for example), while the attitude/translation control system prevents the spacecraft from moving too much.

A certain amount of spacecraft motion might be tolerable, as long as this does not compromise safety and

stability of the manipulator task.

Performing the manipulation maneuvers with the attitude and translation control system inactive

most of the time can help conserve fuel and is referred to here as reaction{mode control. The control system

turns on when the disturbance motions in the base{body exceed prescribed bounds. One of the desirable

goals of space manipulator control is to plan and execute manipulator motions that minimize the activation of

the control system in order to conserve fuel. The internal hinges of the space manipulator hinge represent the

active degrees of freedom, while the six base{body degrees of freedom represent passive degrees of freedom.

During reaction-mode control, the passive hinge forces are zero, i.e. Tp = 0. These forces are non{zero only

when the space vehicle control system is on. The motion planning problem for space manipulators consists

of computing active hinge forces to execute a desired end{e�ector trajectory while minimizing base{body

motion. We assume that the manipulator has redundant degrees of freedom that can be used to minimize

the motion of the base{body. This problem can be solved using the algorithm in Sections 5 and 6. At each

control sample time, the following steps are executed:

1. The algorithms in Section 6 are used to recursively compute the generalized and disturbance Jacobians

JG and JD and form the composite Jacobian-like quantity

�
JG
JD

�

2. The combination of (6.10) and (6.12) characterizes the e�ect of the active hinge accelerations _�a upon

the end{e�ector acceleration �(0) and the passive hinge accelerations _�p as follows:�
JG
JD

�
_�a =

�
�(0)
_�p

�
+ velocity and Tp dependent terms (7.1)

(7.1) is solved for the active hinge acceleration _�p using the desired value for the end{e�ector acceler-

ation and a value of zero for the acceleration at the passive hinges. The composite Jacobian matrix

might not be square in most cases. When there are only a limited number of degrees of freedom, (7.1)

can only be solved approximately and some performance will be lost. On the other hand, when there

are su�cient redundant degrees of freedom, an in�nite number of solutions will exist. In this case the

solution can be chosen to meet additional performance objectives.

3. Next the active hinge accelerations are used in the generalized dynamics algorithm of Section 5 to

compute the active hinge forces Ta

The spacecraft control forces Tp can be directly used in the steps of this algorithm at those instants

in time when these forces are not zero. The above procedure is repeated at every control sample time instant

throughout the time interval of interest.

This approach complements methods that involve the integrals of motion associated with space

manipulators. These methods have been used extensively in other studies of space manipulators [10{13]. The

six base{body degrees of freedom are ignorable coordinates [14] because the kinetic energy of the manipulator

does not depend on the orientation or location of the manipulator in free{space. With the manipulator

kinetic energy given by 1
2
��M�, the subset of the Lagrangian equations of motion corresponding to the

passive degrees of freedom, i.e. the lower half of (4.2) is:

d[Mpa�a +Mpp�p]

dt
�

1

2
r�p [�

�M�] = Tp (7.2)

SinceM, and consequently the kinetic energy do not depend on the base{body hinge generalized coordinates

�p, we have

r�p [�
�M�] = 0
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The left-hand side of (7.2) is therefore an exact di�erential and it can be rewritten in the form

Mpa�a +Mpp�p = [Mpa; Mpp]� =

Z t

t0

Tpdt+ constant (7.3)

The left hand side of (7.3) is precisely the 6{vector spatial momentum1 of the whole space manipulator at

time t. The constant on the right hand side is the spatial momentum at time t0, and the integral term

re
ects the rate of change of the momentum. (7.3) is equivalent to a time{varying, non{linear constraint on

the generalized velocities of the system.

During reaction-mode control, Tp = 0, and therefore the left{hand side of (7.3) is constant, i.e.

the linear and angular momentum of the manipulator are conserved, and are integrals of motion for the

manipulator. The conservation of linear momentum is a holonomic constraint and implies that the center

of mass of the manipulator remains stationary. On the other hand, the conservation of angular momentum

represents a nonholonomic constraint. Methods using these constraints have been developed for analyzing the

kinematics, dynamics and control of space manipulators. These methods have primarily focused on the case

when the right side of (7.3) is zero, i.e. when the manipulator has zero spatial momentum and is undergoing

reaction{mode control. The simple form of the generalized and disturbance Jacobian relationships of (6.1)

and (6.2) hold only for this special situation. The extensions proposed to handle the cases when either

the spatial momentum is non{zero or when at least some of the base{body control forces are non{zero are

non{trivial since the constraint equations are time-varying and are not as simple. While the study of the

special nature of the constraints is important to gain insight into the control problem, the results of this

paper provide good computational algorithms to support these methods.

8 Conclusions

The techniques developed in this paper are applicable to the general class of under{actuated manipulators.

A number of important applications such as free{
ying space robots, hyper{redundant manipulators, manip-

ulators with structural 
exibility, manipulators (loosely) grasping an articulated object, and manipulators

with actuator failures involve under{actuated manipulators.

For analysis, under{actuated manipulators are decomposed into component active and passive ma-

nipulators. This decomposition is used to express the equations of motion in a partitioned form. Spatial

operator techniques are used to simplify and develop closed{form expressions for the equations of motion.

A new e�cient and recursive O(N ) dynamics algorithm, whose complexity depends only linearly on the

number of degrees of freedom has been described. This algorithm may be viewed as a generalized dynamics

algorithm for manipulators. The structure of this algorithm is a hybrid combination of the well known

inverse and forward dynamics algorithms for regular manipulators. It reduces to known inverse and forward

dynamics algorithms when all the hinges are set to either all active or all passive status respectively. We also

develop operator expressions and computational algorithms for the generalized and disturbance Jacobians for

under{actuated manipulators. These Jacobians are useful for end{e�ector motion control and path planning

for under{actuated manipulators.
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Appendix A: Proofs of the Lemmas

We �rst establish the following useful identities.
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Lemma Appendix A:.1 The following spatial operator identities are used in the proofs of the lemmas in

this paper:

 �1 = ��1 +KpHp (A.1)

 KpHp� = ��  (A.2)

[I �Hp Kp]Hp� = Hp (A.3)

�Kp[I �Hp Kp] =  Kp (A.4)

 M � = ~ P + P (A.5)

�M � = ~�P + P (A.6)


M�� = T �� = �� � ( � �
P ) = ��H�
p [K

�
p( 

� �
P ) +D�1p Hp P ] (A.7)

( � P
)M�� = ( � P
)P + P ~ � =  M � � P
P (A.8)

= �� ( � P
) (A.9)

Proof: From (4.9), we have that

 �1 = I � E = (I � E�) + E�GpHp = ��1 +KpHp

This identity immediately leads to the identities (A.1) and (A.2). The identities in (A.3) and (A.4) follow

easily from (A.2).

Pre and post multiplying (4.8) from the left and the right by the operators  and  � respectively

leads to (A.5). On the other hand, pre and post multiplying (4.8) from the left and the right by the operators

� and  � respectively leads to (A.6).

We have that


M�� =  �H�
pD

�1
p Hp M��

=  �H�
pD

�1
p Hp[ P + P ~��] (using (A.6))

= 
P +  �H�
pK

�
p�
�

= �� � ( � �
P ) (using (A.2))

Also

��H�
pK

�
p ( 

� �
P ) = ��H�
pK

�
p 

�[I �H�
pD

�1
p Hp P ]

= (�� �  �)[I �H�
pD

�1
p Hp P ] (using (A.2))

= �� � ( � �
P )� ��H�
pD

�1
p Hp P

This establishes (A.7).

( � P
)M�� = ~ P + P�� � P [�� �  � +
P ] (using (A.6) and (A.7))

=  M � � P
P (using (A.5))

This establishes (A.8).

20



APPENDIX A: PROOFS OF THE LEMMAS

Proof of Lemma 5.1:

(5.1a) is merely a restatement of Lemma 4.3. With regards (5.1b):

Sap = MapM
�1
pp (using (4.10))

= Ha�M��H�
p [I �Hp Kp]

�D�1p [I �Hp Kp]

= Ha�M �H�
pD

�1
p [I �Hp Kp] (using (A.3))

= Ha

�
�Kp + P �H�

pD
�1
p

	
[I �Hp Kp] (using (A.6))

= Ha

�
 Kp + P �H�

pD
�1
p [I �Hp Kp]

	
(using (A.4))

= Ha

�
( � P
)Kp + P �H�

pD
�1
p

	
For (5.1c):

Saa = Maa �MapM
�1
ppM

�
ap =Maa � SapM

�
ap

= Ha

�
��  KpHp�� P �H�D�1p [I �Hp Kp]Hp�

	
M��H�

a (using (5.1b))

= Ha

�
 � P �H�D�1p Hp 

	
M��H�

a (using (A.2) and (A.3))

= Ha f � P
gM��H�
a

= Ha

n
( � P
)P + P ~ �

o
H�
a (using (A.8))

Proof of Lemma 5.2:

From (4.4) we have that

_�p = Spp[Tp � Cp]� S
�
ap

_�a

= [I �Hp Kp]
�D�1p fTp �Hp (KpTp + b+M��a)g ��

K�
p 

� + [I �Hp Kp]
�D�1p Hp P

	
H�
a
_�a (using (A.3))

= [I �Hp Kp]
�D�1p fTp �Hp (KpTp + Pa+ b)g �K�

p 
�a��

K�
p 

� + [I �Hp Kp]
�D�1p Hp P

	
H�
a
_�a (using (A.6) and (A.4))

= [I �Hp Kp]
�D�1p

n
Tp �Hp 

�
KpTp + P [H�

a
_�a + a] + b

�o
�K�

p 
�[H�

a
_�a + a]

= [I �Hp Kp]�p �K�
p 

�[H�
a
_�a + a] (A.10)

This establishes (5.3b). Also,

� = ��[H� _� + a] = ��[H�
a
_�a +H�

p
_�p + a]

= ��H�
p

n
[I �Hp Kp]

��p �K�
p 

�[H�
a
_�a + a]

o
+ ��[H�

a
_�a + a] (using (A.10))

=  �[H�
p�p +H�

a
_�a + a] (using (A.2) and (A.3))

This establishes (5.3a). From (A.7) it follows that

SapCp = Ca �Ha( � P
)[M��a+ b] = Ca �Ha( � P
)[Pa+ b]�HaP ~ �a

Thus we have that

Ta = Saa _�a + Sap[Tp � Cp] + Ca

= Ha

n
( � P
)P + P ~ �

o
H�
a
_�a +Ha

�
( � P
)Kp + P �H�

aD
�1
p

	
Tp

+Ha( � P
)[Pa+ b] +HaP ~ �a

= Ha[I � P �H�
pD

�1
p Hp]z +Ha[P ~ �(H�

a
_�a + a) + P �H�

pD
�1
p Tp] (using (A.8))

= Ha

n
z + P [��H�

a
_�a � a]

o
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This establishes (5.3c).

Proof of Lemma 6.1:

It has been shown in reference [6] that

Hp M �H�
p = Dp (A.11)

Thus


M
 =  �H�
pD

�1
p [Hp M �H�

p ]D
�1
p Hp = 


This implies that not only T , but also T = I � T are each projection operators. Since rank[Hp] = Np, and

 and Dp are both full{rank operators, it implies that the rank of 
 =  �H�
pD

�1
p Hp is Np. Since M is

always full-rank, this implies that T = 
M is of rank Np. Since T = I � T is a projection operator, this

implies that its rank is N �Np = Na. (6.6) is simply a mild restatement of (A.7).

It is easy to verify that �pPH
�
p = 0, and so E PH

�
p = ~ PH�

p = 0. Since  = I + ~ , it follows that

 PH�
p = PH�

p . Thus


PH�
p =  �H�

pD
�1
p HpPH

�
p =  �H�

pD
�1
p Dp =  �H�

p

Using this in (6.6) establishes (6.7).

Proof of Lemma 6.2:

It is easy to verify that T
�
MT =MT . Thus it follows that

�T
�
MT �� = �MT ��

= �M � � �T
�
P (using (6.6))

= ( � P
)P + P ~ � (using (A.8))

Pre- and post{multiplying the above with Ha and H�
a and comparing with the expression for Saa in (5.1c)

establishes the lemma.

Proof of Lemma 6.3:

The �rst equality follows from (6.10) and the second from (6.6).
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